
CMR in the Cloud Workload Driver - Internal Design
This design is for the workload driver for the CMR in the Cloud/NGAP

 . The purpose of the workload driver is to support load testing

to measure performance of the CMR NGAP system to provide performance benchmarks and to ensure that performance does not degrade as the
code changes. At least one component of this design is applicable to the related problem of comparing CMR NGAP performance to current CMR
operational performance.

I. Generating workload driver input data

The input data shall consist of files derived from processing search and ingest logs. These files will contain an initial header for defining constants
and subsequent entries consisting of all the information necessary to reproduce the original calls to ingest/search as recorded in the log files. This
includes the url (including parameters), the http action (GET, POST, etc.), headers, and any POST data. These are given in standard `curl` form
as shown in the example. Constants can be defined at the top of the file and referenced in each entry.

Example file (format subject to change):

BASE_URL=https://cmr-search-wl.ngap.earthdata.nasa.gov

-H "Content-type: application/json" -XPOST
$(BASE_URL)/collections.json?include_highlights=true&page_size=0&page_num=1&include_facets=true&hierarchica
l_facets=true -d '{"condition":{"keyword":"*"}}'

-H "Content-type: application/json" -XPOST $(BASE_URL)/collections.xml?page_num=2&page_size=2000 -d
'{"condition":{"not":{"or":[{"provider":"SCIOPS"},{"provider":"AU_AADC"},{"provider":"ESA"},{"provider":"EU
METSAT"},{"provider":"ISRO"},{"provider":"JAXA"},{"provider":"NOAA_NCEI"}]}}}'

-XPOST $(BASE_URL)/collections.xml?page_size=10&page_num=1&echo_compatible=true

-H "Content-type: application/json" -XPOST
$(BASE_URL)/collections.json?include_highlights=true&page_size=0&page_num=1&include_facets=true&hierarchica
l_facets=true -d '{"condition":{"keyword":"*"}}'

-H "Content-type: application/json" -XPOST
$(BASE_URL)/collections.json?include_highlights=true&page_size=0&page_num=1&include_facets=true&hierarchica
l_facets=true -d '{"condition":{"keyword":"*"}}'

This data will be generated by a log miner script that will parse search and ingest logs. This script will retrieve metadata as necessary from
metadata-db and include it in the input file. Access tokens provided with requests are problematic because they are not stored in the log files (for
security reasons). To get around this the CMR services will have to be modified to store a reference to the provided token (a GUID is available for
this) so the log miner can retrieve the token. This could potentially affect search performance, so it is likely we would need to add GUIDs to the
information we cache for tokens.

The initial version of the WL drivers will not support including tokens in the input - the system token will always be used.

II. Workload Driver

The workload driver shall consist of a Clojure web application that can be deployed in NGAP or run in a local development environment. The
application diagram is given below:

 - JIRA project doesn't exist or you don't have permission to view it.CMR-3134

https://cmr-search-wl.ngap.earthdata.nasa.gov
https://bugs.earthdata.nasa.gov/browse/CMR-3134?src=confmacro

The application consists of a web API front end and a back end job processor that executes the WL runs. The user can either submit an input file
with the request or a link to a file stored in S3. If an S3 link is specified then the front end downloads the file from S3, otherwise the file is
uploaded from the user to the front end. The front end then sends the WL request asynchronously through a `core.async` channel to a job
processor thread. The job processor uses the specified file as input and sends the specified queries to the CMR WL NGAP.

Logs from the job processor and the CMR services are analyzed using Splunk.

Web API

The web API provides two endpoints:

1. start_wl_run (POST) - this endpoint initiates a WL run by providing the parameters (and possibly data) for the job processor. The following
parameters are supported:

num_threads=num (optional) - the number of worker threads to use during the run. defaults to 10.
url_file_link=s3_link (optional) - an S3 link to be used to download the data file
delay=max_delay (optional) - A random delay up to max_delay will be inserted between worker requests to simulate typical network
traffic. Default is zero (no delay).

If the url_file parameter is not included then the endpoint will initiate a multi-part file upload to allow the user to upload the input file.

Only one WL run request can be processed at a time.

If the job processor is still running a previous run when a start_wl_run request is submitted the result is an error with status 429 and message "A
workload run is currently executing. Please wait for it to finish or stop it before resubmitting."

When the file has been uploaded/retrieved and validated the front end will submit a WL run request on the channel (asynchronous).

The front end responds with a 200 status and a message containing the number of entries in the file. If the file or parameters are invalid
an appropriate status code and error message are returned.

2. stop_wl_run (POST) - this endpoint stops the currently running WL job synchronously and sends a response to the client with status 200 or an

appropriate status and error message if something went wrong.

These endpoints require an ECHO system token be provided as part of the request.

Missing or invalid tokens will result in an error.

Job Processor

The job processor listens on the channel for jobs and spawns worker threads to process the queries based on the num_threads parameter.
Results are logged into a single log for analysis with Splunk.

	CMR in the Cloud Workload Driver - Internal Design

